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Abstract: Randomized probe imaging (RPI) is a single-frame diffractive imaging method that
uses highly randomized light to reconstruct the spatial features of a scattering object. The
reconstruction process, known as phase retrieval, aims to recover a unique solution for the
object without measuring the far-field phase information. Typically, reconstruction is done
via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep
learning based method to reconstruct phase objects from RPI data. The method, which we call
deep k-learning, applies the physical propagation operator to generate an approximation of the
object as an input to the neural network. This way, the network no longer needs to parametrize
the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown
to be computationally efficient and robust to Poisson noise. The advantages provided by our
method may enable the analysis of far larger datasets in photon starved conditions, with important
applications to the study of dynamic phenomena in physical science and biological engineering.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diffractive imaging is a set of lensless imaging techniques that are used for the reconstruction of
non-periodic objects [1,2], such as integrated circuits [3], biological proteins [4], bone tissue
[5], and more. In single-frame diffractive imaging, an incident beam illuminates an isolated
unknown sample. Object features that are comparable in size to the illumination wavelength
cause diffraction and the resulting intensity pattern is subsequently measured on a camera. The
phase retrieval algorithm then recovers the lost phase information and reconstructs a discrete
representation of the object [6–8]. For extended objects, multi-frame measurements can be made
by scanning a localized illumination across a sample, a method known as ptychography [2,9].
The uniqueness of the reconstruction is guaranteed by illumination overlap between the multiple
measurements, improving the reliability of the reconstruction [10,11].

The trade-off between single-frame and multi-frame diffractive imaging is that more measure-
ments provide more stringent constraints on object reconstruction at the expense of longer
time to acquire the data. Efforts have been made to implement ptychography with single-shot
measurements, though they come at the cost of high hardware complexity and low information
acquisition efficiency [11–13]. The search of a single-frame imaging method that retains the
reliability and flexibility of multi-frame approach continues.
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Randomized Probe Imaging (RPI) is a single-frame diffractive imaging method that uses
randomized light, rather than a finite support constraint, to generate a unique solution to the
phase retrieval problem [14]. The combination of randomized illumination and a band-limiting
condition on the object provides enough information in the single-frame diffraction intensity to
guarantee a unique solution up to a global additive phase factor. RPI is promising, for example,
for time-dependent nanoscale X-ray imaging, since it does not introduce any optics behind the
sample, or require any alternations to the sample. It has been shown that RPI can produce
high-fidelity reconstructions using gradient descent based iterative algorithms [14]. However,
conventional iterative algorithms are computationally expensive and typically do not exploit
regularizing priors based on the statistical properties of scattering objects. As a result, it can be
challenging to process large volumes of data with these algorithms, and they can have limited
performance under low-light conditions.

Here, we propose a deep learning framework – deep k-learning – which is specifically
designed to address the issues of computational load and low-light performance for far-field
RPI reconstructions. Recently, many deep learning based algorithms have been proposed to
solve phase retrieval problems, including reconstructions in tomography [15–21], ptychography
[22–26], and holography [27–30]. Compared with conventional iterative approaches, deep
learning algorithms can produce moderate quality reconstructions with low data redundancy,
high computational efficiency, and low latency [15,22,27]. Deep learning methods have been
particularly successful under noisy, low-light conditions [31,32].

In most previous works, a deep neural network (DNN), typically a convolutional neural network
(CNN), is trained with examples of objects and their corresponding diffraction patterns. The
goal is to minimize the loss between the generated objects output by the network and the ground
truth. After training, the network will have learned the direct transformation from measurement
to scattering object, implicitly incorporating the physics of light propagation. This is known
as End-to-End training, and it relies on the idea that a learnable transfer function exists which
maps the intensity measurements onto the object domain. In contrast, deep-k-learning uses an
approximated version of the object – the output from one iteration of an iterative algorithm
– as the input to the neural network. This follows a recent thread of research that leverages
approximate physical operators to generate an input image, also referred to as the “Approximant”,
which is already in the object domain [31,33–36], generally finding vastly improved results even
with simpler neural network architectures.

The use of an approximate physical operator has three main advantages over an End-to-End
approach. First, the network no longer needs to learn the diffraction physics, which allows
for leaner and simpler network architectures. Second, weight-sharing convolutional layers are
not well suited to learning maps between the far-field and object domains. This is because
the inductive bias in a convolutional layer assumes that relationships between input and output
features are local and translationally equivariant. When mapping between far-field and object
domains, these assumptions are emphatically not true. Third, pre-trained models and transfer
learning can be applied when the network’s inputs and outputs follow a natural image distribution,
allowing for major speedups when training domain specific models.

The rest of this paper is structured as follows: First, we describe the principle of RPI and its
experimental design in Section 2.. Next, we formulate the End-to-End phase retrieval method
and discuss its pitfalls in Section 3.. We explain the proposed deep k-learning framework in
Section 4.. Finally, we share numerical and experimental results in Section 5. and 6.. Concluding
remarks are in Section 7..

2. Principle of RPI

The experimental geometry of RPI is outlined in Figure 1. A randomized zone plate first focuses
coherent illumination at a wavelength λ to a focal spot. An order selecting aperture blocks
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unwanted higher order diffraction from the zone plate, producing an aperture filled with a
band-limited random field at the sample plane. The randomized probe P(x, y) then interacts with a
thin sample described by a complex object function O(x, y). In our work, we consider phase-only
objects O(x, y) = exp(iϕ(x, y)) for simplicity. The resulting exit wave E(x, y) = P(x, y)O(x, y)
propagates to the Fraunhofer plane where its intensity is measured by a charge-coupled device
(CCD) camera. The noiseless intensity measurement I0(kx, ky) thus can be written as

I0(kx, ky) = |F {P(x, y)O(x, y)}|2, (1)

where F denotes the Fourier transform operator when the exiting wave propagates to the far-field.
In practice, measurements are also subject to various sources of corrupting noise such as Poisson
statistics and additive noise due to the CCD circuitry and detection process. We express the noisy
measurement I(kx, ky) in the far-field as

I(kx, ky) =P{I0(kx, ky)} +N , (2)

where P denotes Poisson sampling with parameter λ and N is the additive Gaussian noise.

Fig. 1. A conceptual diagram of the layout used in an RPI experiment.

In the RPI reconstruction process, the measured single-frame diffraction intensity I(kx, ky) and
prior knowledge of the probe wavefield P(x, y) are used to reconstruct a discrete representation of
the object O(x, y). Note that the presence of randomized illumination P(x, y) breaks the spatial
shift and conjugate inversion degeneracy of the classic two dimensional Coherent Diffractive
Imaging (CDI) problem [37]. Rather than resorting to a finite support constraint as in traditional
CDI, the reconstruction process in RPI uses a band-limiting constraint on the object to restrict
the number of free parameters and achieve sufficient data redundancy.

Importantly, this reconstruction process is only well-posed when the diffraction pattern contains
sufficiently more measurements than the number of independent degrees of freedom in the
object. Without additional information about the object, this leads to an expectation that a stable
reconstructions can be achieved when the highest frequency kp at which the probe has nonzero
power remains larger than the frequency ko to which the object is band-limited. Based on this
analysis, it is useful to define the resolution ratio R = ko

kp
[14]. As the resolution ratio decreases,

the sampling redundancy increases, producing more stable (but lower-resolution) reconstruction.
In this work, we consider the role of machine learning approaches at various values of R, ranging
from low values (∼ 0.25) where the reconstruction is extremely tightly constrained to high values
(∼ 2) where, without additional information, the problem is almost certainly ill-posed.

3. End-to-end phase retrieval

Convolutional neural networks are an indispensable tool for many modern computer vision
applications, such as image classification [38], objection detection [39], and neural style transfer
[40]. Many recent works have also shown that convolutional networks perform well in solving
phase retrieval problems [31–33,41–43].
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The most basic way to apply a convolutional neural network to the phase retrieval problem,
which remains the basic standard, is known as the End-to-End approach. In this design, one trains
a network using the raw diffraction patterns as an input, producing as output an estimate of the
retrieved object. In our case, this output would be an estimate of the phase of a thin, phase-only
object. This works well, or at least passably, for many variants of diffractive imaging based on
Fresnel propagation [31–33,44].

Considering the design of a standard convolutional network, outlined in Fig. 2, can help us
understand why these networks are a natural fit to Fresnel-based phase retrieval problems.

Fig. 2. Architecture of conventional encoder-decoder

Typical networks are divided into an encoding arm and a decoding arm. The encoding arm
learns to predict a representation of the scattering object in a low-dimensional latent space based
on an input diffraction pattern. The decoding arm learns to map from the embedding manifold
back to the discrete representation of the scattering object - the desired final result. Often, skip
connections are used to bypass the feature maps from the encoder arm to the the corresponding
layers in the decoders arm. This allows local information to be transferred directly from the input
to output domains, which helps preserve high frequency structures in the reconstruction [44].

Convolutional neural networks often work well when the relationship between the input and
output domains is fundamentally local. This is because weight-sharing convolutional layers
preserve translation equivariance [45], such that a shifted input to a layer produces a shifted output.
Because Fresnel diffraction patterns do preserve the location of features in the scattering object,
the map that must be learned to perform phase retrieval naturally shares the same translation
equivariance as the convolutional layers.

However, convolutional networks are not ideal when the input diffraction patterns are in the
far-field regime (as is the case for RPI), for two major reasons. First, the real-space to Fourier
space mapping is global. In a far-field phase retrieval such as RPI, every pixel in the diffraction
pattern includes a contribution from every pixel in the real-space object domain. Second, the
real-space to Fourier space mapping does not respect translation equivariance. A shifted input
diffraction pattern should be mapped to a version of the output object with linear phase ramp,
rather than a translated version of the corresponding output object. This is formalized with the
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following inequality:

g0(x + δx, y + δy) ≠ |F {P(x, y)O(x + δx, y + δu)}|2. (3)

Although the presence of boundaries and downsampling layers means that typical convolutional
network architectures are not strictly translation-equivariant in a formal sense, their bias toward
retrieving local, translation-equivariant maps makes the direct application of convolutional neural
network to end-to-end far-field phase retrieval problematic.

4. Our solution: deep k-learning

4.1. Physical operator and autoencoder

The workaround we used for applying convolutional neural networks to phase retrieval in the
far-field (in this case, RPI) is to apply an approximate map from the diffraction pattern domain to
the object domain before using the neural network for the final reconstruction. This framework is
depicted in Fig. 3. Although the approximate map cannot produce an accurate reconstruction on
it’s own, it creates inputs for training and inference which already live in the same image space
as the final reconstructed objects. We call this approach deep-k-learning, because it is designed
to compensate for the issues created by having input data which is organized in k-space.

Fig. 3. Our deep k-learning framework

The choice of approximate mapping is clearly of crucial importance. In this work, we use a
single iteration of a gradient-descent based iterative algorithm solving the following optimization
problem for a diffraction pattern Ii:

O+i = argmin
O′

i

L
{︁
Ii, |F {P × O′

i }|
2}︁ (4)

Here, O′
i is a low-fidelity estimate of the band-limited object and P is the known probe

state. The probe P is either known a priori (as for simulation), or retrieved via ptychography
measurement (as for experiment). The output of a single step of the iterative algorithm when
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initialized with a uniform object is called the Approximant and is denoted by O∗
i . When more

steps of the optimization is taken (with lower learning rate), we regard the output as iterative
reconstruction. Adam optimizer is chosen to generate Approximant and iterative reconstruction
for fair comparisons. Approximant is then fed into a CNN based autoencoder Gw with parameters
w. The training process learns a map from Approximants to ground-truth objects, formally
written as:

ŵ = argmin
W

∑︂
i

L
{︁
Oi, Gw(O∗

i )
}︁

(5)

where the optimal weights after gradient descent are ŵ, and Oi is the ground truth object.
The network we used is an autoencoder architecture [46], where the encoder arm shares

similar architecture as EfficientNetB7 [47] to enable efficient feature extraction. The feature
pooling is built on inverted residual blocks (or MBConv), where the input and output of the
residual block are thin bottleneck layers as opposed to traditional residual blocks to achieve
efficient feature extraction [47,48]. In each inverted residual block, convolutional layers are being
deployed to extract local features, and squeeze and excitation (SE) blocks are being used to extract
global features [49]. Note that the convolutional layers in our implementation are combined
with depth-wise and point-wise convolutions to reduce the computation cost [50]. Residual
connections within each block are employed to avoid the problem of vanishing gradients [51],
batch normalization is adopted to stabilize the learning process [52], and dropout layers are used
to prevent over-fitting. Down-sampling in the encoder arm is achieved via average pooling block
by block, with a pooling size of (32, 32) in total. Therefore, the final embedded output from the
encoder has a dimension of (H/32, W/32, C), where H and W are the height and width of the
input object, and C is the channel size in the last inverted residual block. In our implementation,
C is 2560.

The decoder arm is comprised of five residual up-sampling blocks with up-sampling. The
up-sampling is achieved by transposed convolution. Each up-sampling transposed convolution
layer is followed by two convolution layers with same filter and kernel sizes. The scaling factor of
all the up-sampling blocks is (32, 32) in total, producing an output with the shape (H, W, 1). Skip
connections are used between encoder and decoder arms to preserve high-frequency information
[44]. The detailed network architecture can be found in our github page.

4.2. Supervised representation and adversarial loss

Three main choices exist for the loss function L needed to train the deep k-learning framework:
supervised loss, representation loss, and adversarial loss. In this work, we constructed a loss
function consisting of a mix of all three types. When the network is trained with a mix of all three
types, we call it generative deep k-learning. When the network is trained with supervised loss
only, we call it non-generative. The supervised loss, which directly compares predicted ground
truth objects, is the main component. In our implementation, supervised loss was implemented
as the negative Pearson correlation coefficient (NPCC) between the reconstructed objects and the
ground truth, defined as

NPCC = −rX,Y = −
cov(X, Y)
σXσY

, (6)

where cov is the covariance and σX ,σY are the standard deviations of X and Y , respectively.
Previous works have shown that NPCC is more effective in recovering fine features than pixel-wise
loss functions [32,33,44,53]. In the context of our network, NPCC is written as:

Lnpcc(Gw) = EO,O∗ [−rO,Gw(O∗)] (7)

To define the representation loss, we use an ImageNet pretrained EfficientNetB0. This
representation loss is a perceptually-motivated loss which measures the mean absolute error
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between the latent space representation of the reconstructed object H(O+) and the embedding
of the ground-truth object H(O). Here, H refers to the pretrained EfficientNetB0 encoder. It
may improve the reconstruction quality without changing the network architecture [54], helping
the generative model to synthesize features closer to the ground truth distribution. In our
implementation, we choose L1 or mean absolute error to measure the distance between the two
distributions:

Lmae(Gw) = EO,O∗ [∥H(O) − H(Gw(O∗))∥1] (8)

The adversarial loss is computed with a CNN based discriminator. Our implementation of
adversarial loss is inspired by conditional generative adversarial networks (cGANs), a particular
training strategy that uses a discriminator to compete with the autoencoder/generator [55–57].
The objective of cGAN for our RPI problem can be written as follows:

Ladv(Gw, D′
w) =

(︂
Eo∼po(o)

[︁
log Dw′(o)

]︁
+ Eo∗∼po∗ (o∗)

[︁
log(1 − Dw′(Gw(o∗)))

]︁ )︂
(9)

Now, our autoencoder becomes a generative model G that tries to generate objects with the
highest possible value of D(G(o∗))) to fool the discriminator D, as shown in the second term of
Eq. (9). Simultaneously, the discriminator D tries to maximize its ability to recognize ground
truth objects as real and generated objects as fake, i.e. Ĝw = arg minGw maxDw′ Ladv(Gw, D′

w).
This component of the loss updates the weights in the discriminator. During training, the
generator and discriminator are simultaneously updated based on their respective losses. The
adversarial loss generally is thought to help the autoencoder/generator learn the transformation
of the noise within the object Approximant to plausible features in the final reconstructed object,
given the prior of ground truth distribution O.

Finally, the total loss for the generator of our deep k-learning framework is defined as:

Ltotal = Lnpcc(Gw) + α × Lmae(Gw) + β × arg min
Gw

max
Dw′

Ladv(Gw, D′
w) (10)

Here, α and β are hyper-parameters that determine the relative weights between the three types
of learning loss. For the non generative framework, α and β are set to zero.

5. Numerical results

We conducted a set of numerical simulations to demonstrate the effectiveness of the deep
k-learning method on the RPI phase retrieval problem. We focused on the role of the resolution
ratio R and the noise level. High resolution ratios R and low signal regimes are particularly
interesting to study because these conditions are the most challenging scenarios for iterative
algorithms, and therefore are most likely to benefit from the added information about the object
distribution that deep-k-learning can introduce.

In our first experiment, we studied the performance of the various proposed methods under
ideal illumination conditions. We simulated an RPI experiment using 256 × 256 pixel objects
defined with uniform amplitudes and phases drawn from randomly cropped ImageNet images,
scaled to a range of up to 1 radian. 4,000 training examples and 100 testing examples were
simulated, at R = 0.5 with 104 photons per pixel in the 256 × 256 pixel object. Fig. 4 shows a
visual comparison between the phase images reconstructed with each method. Fig. 4(a) shows
a set of ground truth objects selected from the testing dataset. In Fig. 4(b), the corresponding
Approximants are shown. We can see that the approximate map successfully retrieves the general
structures of the object, albeit at an incorrect overall scale. Additionally, noise and artifacts are
readily apparent and, when just considered as images, the Approximants are of low quality. In
contrast, Fig. 4(c) shows the converged results from iterative reconstructions after 100 iterations.
Visually, they look identical to the ground truth phase objects, as expected based on the ideal
imaging conditions [14].
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Fig. 4. Visual comparison for the phase-only object reconstruction at R = 0.5 with 104

photons per pixel. The color bar is set to the range of the ground truth images. (a) contains
the ground truth phase-only objects, (b) contains the input Approximant with one iteration,
(c) contains the iterative reconstructions, (d) contains the non generative deep-k-learning
reconstructions, (e) contains the generative reconstructions, (f) contains the end-to-end
reconstructions.

Moving to the neural network outputs, Fig. 4(d) shows the non generative deep k-learning
reconstructions. Drastic improvements are obvious when compared with the input Approximants.
Reconstruction are now smoother and contain fine details that were washed out by noise in the
input Approximants. However, although the results have high visual quality, there are noticeably
missing fine features when compared with ground truth and iterative reconstructions. Fig. 4(e)
has the generative deep-k-learning reconstructions, although visually the difference between
non-generative and generative reconstructions under these illumination conditions is not obvious.
Finally, Fig. 4(f) contains the output of the end-to-end network reconstructions. These results
only contain low frequency information about the phase objects. This is not entirely unexpected,
given the previous arguments about the mismatch between convolutional neural networks and
mappings between k-space and real-space.

After confirming that deep-k-learning is capable of producing moderate quality images under
ideal conditions, we studied how its performance depends on the relationship between the highest
frequencies in the object and those in the probe. In Fig. 5(a) we show a quantitative comparison
of reconstruction quality at values of R ranging from 0.25 to 2 at 104. The x-axis represents
the resolution ratio R, and the y-axis reports the MS-SSIM (Multi-scale Structural Similarity)
metric for the reconstruction quality. The reported value is the mean MS-SSIM result over the
test reconstruction set, and the error bars show the standard deviation within the test dataset.
Recall that larger values of R describe more challenging conditions where the features in the
object are smaller when compared to the speckle size in the probe.
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Fig. 5. Quantitative comparison between different training frameworks at different R

A total of four reconstruction methods are reported in the figure: non generative deep k-
learning, generative deep k-learning, an iterative algorithm (100 iterations), and the End-to-End
training method. Details about the data processing and network training can be found in the
Appendix. Iterative reconstructions have the best performance over the full range of R. At R ≤

1, the MS-SSIM evaluations of iterative reconstructions approach 1, as expected [14]. As R
increases beyond 1, the iterative reconstructions start to degrade. These observations agree with
previous work, as larger values of R lower the data redundancy in the diffraction patterns. Both
variants of deep k-learning methods outperformed end-to-end networks, although the results
still underperformed the iterative reconstructions. Reconstruction quality also degraded with R
across methods, as expected. However, the End-to-End reconstructions’ quality plateaus at a
lower value of R, regardless of the oversampling ratio, in agreement with the visual observations.

Although the deep-k-learning reconstructions do not produce the same level of precision as
the iterative results, they have a major advantage in runtime. Fig. 5(b) compares the per-pattern
runtime of iterative algorithms and deep k-learning method across R. The intermediate results
from the iterative reconstructions are shown at 1, 5, and 10 iterations, and every 10 iterations
thereafter until they surpass the comparable deep-k-learning result. The strong dependence
of per-iteration runtime on R arises because smaller values of R require more highly textured
probes, which are stored in larger arrays. These results reveal that the deep k-learning results
have comparable quality with iterative reconstructions at around 40 to 50 iterations. However,
the computational speedup provided by deep k-learning ranges from 3x to 10x, depending on the
value of R.

Finally, we investigated the performance of deep-k-learning for RPI under noisy conditions,
where knowledge of the object’s prior statistics is the most valuable. Fig. 6 shows a visual
comparison for the phase images reconstructed at R = 0.5, with illumination levels ranging
from 103 to 1 photon per object pixel. As the photon incidence rate decreases, reconstruction
quality inevitably decreases as well. As expected, the iterative reconstruction quality is strongly
dependent on the photon shot noise level, with the signal quickly fading under growing background.
However, the deep-k-learning results generally retain their visual quality even at photon rates
low enough to cause the iterative method significant degradation. In the single photon case, the
iterative reconstruction becomes nearly unrecognizable, while both deep k-learning methods
produce reconstructions that, while visibly degraded, maintain many of the general features of
the object.

Fig. 7(a) shows the quantitative comparison from the same sweep over low photon imaging
conditions, following the same format as Figure 5. These quantitative results confirm the analysis
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Fig. 6. Visual comparison for the phase-only object reconstruction for R=0.5 at low photon
imaging conditions. The colorbar is set to the range of the ground truth images.

from our visual inspection of Fig. 6. Both deep k-learning methods are significantly more robust
to Poisson noise than the iterative methods, producing reconstructions with superior quality
starting at 102 photons. As the photon number decreases further, the gap between deep k-learning
and iterative reconstruction quality grows. This shows the effectiveness of the strong object prior
embedded in the deep k-learning methods through the training process.

Fig. 7. Quantitative comparison between different training frameworks at low photon
imaging conditions

Finally, in Fig. 7(b) we consider the runtime speedup available under high noise conditions,
comparing the iterative algorithm with the best variant of deep-k-learning method at each imaging
condition. Due to the feed-forward nature of deep learning, deep k-learning takes under 10
milliseconds to produce each result, while the iterative algorithm require around 100 milliseconds
to converge, suggesting that the 10x speedup under ideal illumination is preserved, or even
improved upon, under adverse, noisy conditions.
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Overall, our simulation results show that deep k-learning is both faster and more robust to
Poisson corruption than the iterative algorithm. Particularly when photon levels reach 102

photons per object pixel or lower, deep k-learning outperforms iterative algorithms in terms of
reconstruction quality with much faster computational speed.

6. Experimental results

To demonstrate that the deep k-learning approach can successfully be translated from simulation
to experiment, we performed phase retrieval with deep k-learning on a large dataset of RPI
diffraction patterns collected from an optical table-top apparatus. To draw test images from
a well understood distribution, we used a Spatial Light Modulator (SLM) to display 256x256
phase-only images randomly drawn and cropped from the ImageNet dataset. The experimental
design is diagrammed in Figure 8.

Fig. 8. A diagram of the experimental design for our tabletop demonstration.

Polarized light was generated by passing a 635 nm laser diode source (Thorlabs CPS635F)
through a film polarizer aligned to the optic axis of the SLM. This light was then spatially filtered
by a 5 µm pinhole at the focus of a beam expander to enforce spatial coherence across the beam
diameter. A randomized pattern was then imprinted on the wavefield using a randomized zone
plate with a 2 cm diameter and a 50 cm focal length, producing a focal spot with an overall
diameter of 2 mm. An adjustable iris acted as an order selecting aperture for this diffractive optic.

The focus of the randomized zone plate was aligned to the plane of a reflective SLM (Thorlabs
EXULUS HD2) at normal incidence. The phase-only SLM consisted of pixels arranged with
an 8 µm pitch, each of which imprints a variable phase delay between 0 and 2π on the light
field. The reflection was then separated with a non-polarizing 50/50 beamsplitter cube placed
approximately 5 degrees from normal to prevent higher order reflections from overlapping with
the primary beam on the detector. The Fourier plane was finally imaged on a EM-CCD camera
(QImaging Rolera EM-C2) with 8 µm pixels, placed at the focus of an achromatic doublet with a
50 mm focal length (Thorlabs AC254-050-A). A 992 × 992 pixel region was cropped from the
detector, such that the real-space grid corresponding to the measured slice of reciprocal space
consists of 8 µm pixels, aligned with the pitch of the SLM.

We collected four datasets under different imaging conditions, targeting photon fluxes of 1,
10, 100, and 1000 photons per pixel in the 256x256 object. The CCD is calibrated to allow
conversion between analog-digital units (ADUs) and photon counts. A detailed summary of the
experimental measurements, including more information on the noise properties of the detector,
can be found in the Appendix. For each imaging condition, we initially collected a ptychography
dataset on a standard test image (cameraman) to calibrate our knowledge of the probe state. Once
calibrated, we collected a set of 4, 000 training and 100 test diffraction patterns from the cropped
ImageNet objects. In each case, the images were first converted to 8-bit greyscale images, and
finally displayed on the SLM such that the full 8-bit range corresponded to a sweep from 0 to 2π
radians. Details about experimental measurements can be found in the Appendix.
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In Fig. 9 we show the visual comparisons of the test set between different reconstruction
algorithms under low photon conditions. These reconstructions are produced with the same
set of algorithms we studied in section 5.. The most visible difference between simulation and
experiment is that, while in our simulations we assumed the randomized probe focal spot covers
the entire field-of-view, in the experiments the objects are illuminated by a finite circular probe.
Thus, the edges of the object window are not illuminated by the probe and thus do not contain
any object features.

Fig. 9. Experimental reconstruction comparison between different methods under low
photon conditions. The colorbar is set to the range of the ground truth images.

Near 103 photons/pixel, iterative reconstructions show good results in the central region,
getting more and more noisy toward the weaker edge of the probe. This is due to the spatial
variation of the illumination intensity profile. Both the non generative and generative deep
k-learning produce visually high quality reconstructions over the entire field of view of the probe,
although the networks minor artifacts are indeed introduced, especially at the lower end of the
photon incidence rates.

As we decrease the photon budget down through 100 to roughly 10 photons per object pixel,
the quality of the generative reconstructions slowly decreases while the noise rapidly takes over
and dominates the iterative results. The End-to-End model begins to diverge at 10 photons per
object pixel. As we lower the signal rate further, to 1 photon per object pixel, the reconstructions
from all methods fail. To account for the disparity, it is important to recognize that due to the
presence of readout noise and other non-Poisson sources of noise, the signal to noise ratio of
these images is far lower than that of our simulated dataset at 1 photon per pixel.

Fig. 10 shows a numerical comparison that confirms our observations. Note that we only
include the illuminated region (the region in the center images of Fig. 9) when computing the
MS-SSIM values for each method. For iterative reconstruction, we also shift the output pixel
to compensate for a slight misalignment in our optical system. Compared with simulation
results, deep k-learning methods maintain a moderate quality level in the range of 0.8 under the
second-to-lowest illumination conditions, while the quality of the iterative results deteriorates as
the photon number decreases. End-to-end MS-SSIM drops to near zero starting at 10 photon per
object pixel, as the pixel values of the outputs are outside the range of the ground truth. These
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results suggest that the iterative algorithm is much more prone to noise degradation than the
deep-k-learning approach. Thus, deep-k-learning emerges as a valuable alternative particularly
under noisy conditions. This is because under such noisy experimental conditions the deep
k-learning algorithm is far more effective at incorporating strong object priors to regularize the
reconstructions, mitigating noise effects.

Fig. 10. MS-SSIM comparison between deep-k-learning and iterative algorithm on different
Poisson noise corrupted imaging conditions

7. Conclusion

We have demonstrated a reliable machine learning-based computational imaging method, deep
k-learning, that works well for Randomized Probe Imaging with phase-only objects. Our deep
k-learning framework outperforms End-to-End machine learning design in all simulations and
experiments, but underperforms traditional iterative reconstruction when illumination is ample
and noise is low. On the other hand, deep k-learning is more robust under Poisson statistics-
dominated low photon incidence conditions, with reconstructions degrading gracefully even
when the strong noise drives the iterative method to complete failure. In all cases, the fully
trained deep k-learning method is, as expected, more computationally efficient. The improved
resilience to noise makes deep k-learning endowed RPI attractive in situations where illumination
power is limited or the samples are sensitive to excessive radiation exposure. Thus, we expect it
to find application to many dynamic phenomena in the physical, material and biological sciences
and engineering.
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Appendices

A. Discussion of end-to-end RPI phase retrieval

Let Γ ≐ {Oi, Ii} be the paired training dataset, P the known randomized probe, and let Gw be a
set of parameters for the deep neural network that can be trained with. The parameters w are
also commonly referred to as the “connection weights” or simply “weights” in traditional neural
network architectures. Then the end-to-end phase retrieval problem becomes of finding the
optimal weights ŵ such that given any intensity pattern within the dataset distribution Γ, along
with the known probe P, the network can produce a generated object O+i that is an equivalent
class to the Oi, or formally

ŵ = argmin
W

∑︂
i

L
{︁
Oi, Gw(Ii, P)

}︁
(11)

where L is the loss function that measures the discrepancy between the generated object O+i and
ground truth Oi. For RPI, the equivalence class is defined to be the set of all objects which may
be derived from the Ei(x, y) by changing in the global phase. The commonly encountered spatial
shift and time-reversal symmetries in diffractive imaging systems are not symmetries of the RPI
system, due to the presence of the randomized probe [37]. For global phase degeneracy, any
complex rotation of O+i in degree ϕ would result in identical far-field intensity pattern Ii, and
therefore, the output O+i of the formulation above also needs to take those degenerate solutions
into account. An alternative formulation inspired by [58] would be

ŵ = argmin
W

∑︂
i

L
{︁
Ii, |F {Gw(Ii, P)}|2

}︁
(12)

Here, the problem of phase retrieval becomes equivalent to that of minimizing the loss in the
far-field domain. Thus, the inverse problem is indirectly solved, with the optimization forcing
the network to generate the amplitude and phase of the exiting wave E, rather than the object O.
Since the applied constraint is in the far-field domain, the formulation would preserve the global
phase degeneracy in its solution. However, in this case, the network would learn priors based on
the training distribution E, and it would be challenging to continuously sample this distribution
and capture its statistics for testing as E is the product of the object and randomized probe. It
is easier to guarantee that the training distributions O follow the same statistics of the testing
distribution O, as long as training and testing dataset are both constrained to natural images with
geometric features.

B. Network training procedure

Our proposed deep k-learning networks were implemented in Python 3.7.9 using TensorFlow
2.3.1, and trained with NVidia V100 tensor core graphics processing unit on MIT Supercloud
[59]. The object training set was from 4,000 natural images in ImageNet, where phases were
set to be the images and amplitudes were set to be one. The (256 × 256 × 3) ImageNet images
were converted to gray-scale from the original RGB format. Therefore, the total training object
dataset is a complex matrix with dimension of (4000, 256, 256, 1). The randomized probe P
was generated based on the method in [60] given the sampling ratio R. The far-field diffraction
patterns were then numerically simulated based on the optical setup in Figure 1. The approximate
objects were subsequently generated via automatic differentiation with one iterations with steepest
gradient descent for each diffraction pattern, and the loss function L here is the mean square
error (MSE) on the amplitude. The iterative results are from 100 iterations with 0.5 learning rate.
After numerical simulation, we normalized all of the paired training data in the Γ ≐ {Oi, O∗

i , Ii}

dataset between [0, 255]. This would improve network training stability later on. For training,
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Adam optimizer [61] was used with parameters β1 = 0.9 and β2 = 0.999, the initial learning rate
was 2 × 10−4. The validation split was 0.1 to provide an unbiased evaluation of a model fit on
the training dataset.. The learning rate would be reduced by half when the validation loss stops
improving for 10 epochs. We set the maximum epoch to be 200, and the training would stop
early when either the validation loss plateaus for 20 epochs, or the minimal learning rate 10−8 is
reached. This early-stop technique would prevent the model from over-fitting. We keep the same
training parameters for all the networks, the variations of different training were i), the training
strategy (either end-to-end or deep-k-learning), ii), generative or non generative, iii), network
weights initialization (with random initial weights or ImageNet pre-trained weights in the encoder
arm), and iv) hyper-parameter β for generative deep k-learning (α is fixed as 1/8 to reduce the
complexity of hyper-parameter grid search) in the total loss function of the autoencoder/generator.
When the network is initialized with pre-trained weights in the encoder, the 200 epochs would
be completed in two steps: in the first step, we only train the decoder of the network while the
encoder would be frozen with pre-trained weights; in the second step, we unfreeze and train the
entire network. This can accelerate the training for models with pre-trained weights.

For end-to-end training, we divided each far-field diffraction pattern into multiple patches
with dimension of (256, 256, CR), where CR is the number of channels that depends on the
dimension of the diffraction pattern with the given oversampling ratio R. The inputs to the
end-to-end network are the multi-patch representation of diffraction pattern concatenated with
the randomized probe that is also in multi-patch representation. This way, we can keep the
number of parameters in the end-to-end network to be roughly the same as the deep-k-learning
framework (around 76.5 million in total parameters in both cases, not counting the discriminator
network and pre-trained EfficientNetB0), and makes fair performance comparison later on. Also,
in the end-to-end neural network, we removed the skip connections between encoder and decoder
because of the large domain transfer in-between.

C. Experimental procedure for measurements

Table 1. Summary of the four sets of experimental
measurements

Target photon/pixel Measured photon/pixel Averaged SNR

1000 996 6.09

100 127 2.07

10 11.9 0.375

1 1.77 0.0525

Data were collected under four different experimental imaging conditions individually (Table 1).
For the 10, 100, and 1000 photon per object pixel collections, the total image intensity was
modulated by extending the exposure time, using an EM gain of 54 (corresponding to EM level
of 3800 in the camera software) and an offset level of 0. To implement the necessary range of
attenuations, we chose a pinhole size of 5µm, significantly smaller than the waist of the beam
emerging from the collimating objective; and moved the pinhole away from the center to further
lower photon fluxes. The offset level for this measurement was set to 500, due to the extremely
weak signal level. We also collected 10 background images per signal level under a reproduction
of the imaging conditions, with the laser turned off.

The number of photons per object pixel was calculated empirically by summing over the
captured diffraction signal in each image, with the mean background signal for that imaging
condition subtracted off. After multiplying by a previously calibrated conversion factor to convert
between ADUs and photon counts [62], we were able to calculate the mean number of photons
measured on the detector under the respective imaging condition.
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To calculate the reported signal to noise ratios, we separated the noise contribution into
signal-dependent and signal-independent contributions. The signal-independent portion, which
included readout noise, dark current, and shot noise from background photons, was calibrated
empirically using the statistics of the dark images. Specifically, the standard deviation of the
background images was calculated in binned 8 by 8 pixel regions to produce a low-resolution map
of the empirical signal-independent noise level. We estimated the signal-dependent contribution
by assuming it is dominated by Poisson noise. Under this assumption, the standard deviation of
the signal-dependent noise can be estimated by the square root of the measured signal (minus the
mean background) at each pixel. The total variance at each pixel is thus determined by the sum
of the squares of the standard deviations of the two contributions. The reported signal to noise
ratios are defined as the ratio of the sum of the signal image (the total power in the signal channel
across the entire image) to the sum of the calculated standard deviations due to noise (the total
power in the noise channel across the image).

At each photon incidence rate condition, we first took a 31× 31 step ptychography dataset with
75µm steps in order to retrieve the probe and background states. Scanning for the ptychography
dataset was implemented by shifting a displayed image digitally across the SLM. Ptychographic
reconstructions were performed via automatic differentiation ptychography using the Adam
algorithm, with a single probe mode and a quadratic background correction. A learning rate
scheduler was used to lower the learning rate by a factor of 0.2 at plateaus to ensure good
convergence. After performing the reconstruction we displayed the ImageNet images, upsampled
so that each pixel in the image covered a 2 by 2 pixel region on the SLM, in series to collect the
RPI datasets.
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