Physics-assisted Generative
Adversarial Network for X-Ray
Tomography

Zhen Guo

hir s 1l MITMECHE (R EIEC S

Technology




Zhen Guo, Jung Ki Song, George Barbastathis, Michael E. Glinsky, Courtenay T. Vaughan, Kurt W.
Larson, Bradley K. Alpert, Zachary H. Levine

Department of Electrical Engineering and Computer Science, Department of Mechanical Engineering, Massachusetts Institute of Technology,

Singapore-MIT Alliance for Research and Technology (SMART) Centre, Sandia National Laboratory Albuquerque, Applied and Computational Mathematics Division,

National Institute of Standards and Technology, Quantum Measurement Division, National Institute of Standards and Technology

B Massachusetts
I I Institute of
Technology



Angular
rotations

l - Massachusetts
Institute of
Technology

Layered
object f

Measurements g

\
'/

Hf


Presenter Notes
Presentation Notes
This long standing ill-posed problem is fundamental to many applications such as robot navigation, object recognition and scene understanding, 3D modeling and animation, industrial control, and medical diagnosis
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DeepCluster for unsupervised clustering
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Fig. 1: Illustration of the proposed method: we iteratively cluster deep features
and use the cluster assignments as pseudo-labels to learn the parameters of the

convnet.
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Caron, Mathilde, et al. "Deep clustering for unsupervised learning of visual features." Proceedings of the European conference on computer vision (ECCV). 2018.
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