Randomized Probed Imaging through Deep K-learning

(Gradient Descent is All You Need)

Zhen Guo 3D Optics at MIT

Coherent diffractive imaging

https://arstechnica.com/science/2018/05/forget-carbon-fiber-we-can-now-make-carbon-nanotube-fibers/ https://focalplane.biologists.com/2022/05/18/how-quantitative-phase-imaging-can-change-the-way-you-look-at-cells/

Randomized Probed Imaging

Ē

Related Works

PtychoNet: Fast and High Quality Phase Retrieval for Ptychography

Figure 1: Architecture of PtychoNet. In the network: C - convolution, size 4x4, stride 2; Ct - convolution transpose, size 4x4, stride 2; BN - batch normalization; σ - sigmoid. Activation functions in the encoder is LeakyReLU, $\alpha = 0.2$; ReLU in the decoder.

ALGORITHM 1: Reconstruction using PtychoNet.

Input: Full scan $\mathbf{A} \in \mathbb{R}^{N \times h \times w}$, scan layout $\mathbf{M} \in \mathbb{Z}^{N \times 4}$. **Output:** Object image $\mathbf{Y} \in \mathbb{R}^{2 \times H \times W}$. 1 $\mathbf{Y} = \mathbf{K} = \mathbf{0}^{2 \times H \times W}$; 2 **for** *each diffraction image* \mathbf{A}_{i} *in parallel* **do**

3 Compute the corresponding object patch \mathbf{Y}_i in real space with input \mathbf{A}_i ;

4 $\mathbf{M}_i(\mathbf{Y}) = \mathbf{M}_i(\mathbf{Y}) + \mathbf{Y}_i;$

5
$$\mathbf{M}_{i}(\mathbf{K}) = \mathbf{M}_{i}(\mathbf{K}) + \mathbf{1}$$

7 $Y = Y / \max(K, 1);$

Real-time sparse-sampled Ptychographic imaging through deep neural networks

FIG. 1. Architecture of PtychoNN, a deep convolutional neural network that can predict real-space amplitude and phase from input diffraction data alone.

Deep neural networks in single-shot ptychography

Fig. 2. A schematic of the proposed SspNet architecture. SspNet is comprised of an encoder network and a decoder network (a convolutional encoder-decoder) which are represented in this figure as trapezoids: the width of a trapezoid (parallel to the bases) indicates the spatial size of the tensors (not to scale) and the fill color indicates the number of channels where darker color means more channels.

Problems of Deep Learning in Far-field

global phase degeneracy prevent one-to-one correspondence

diffraction patterns

 $|\mathscr{F}\{P(x,y)O(x,y)\}|^{2} = |\mathscr{F}\{P(k_{x},k_{y}) * O(k_{x},k_{y})\}|^{2},$ Objective objective objective of the set of th

object phase

Problems of Deep Learning in Far-field

Conv is translational invariant

Massachusetts Institute of Technology object phase

 $g_0(x+\delta x, y+\delta y) \neq |\mathscr{F}\{P(x,y)O(x+\delta x, y+\delta u)\}|^2.$

Solution? approximant prior + deep learning

- compute/memory efficient for training
- input to the convolutional network is in image domain
- ground phase state is produced (by tanh layer)

ground truth

diffraction patterns

approximant phase

ML reconstructed phase

Generating approximant via automatic differentiation with one iteration

Ghosh, Sushobhan, et al. "ADP: Automatic differentiation ptychography." *2018 IEEE International Conference on Computational Photography (ICCP)*. IEEE, 2018

Network Architecture

Network Architecture

 $\mathcal{L}_{\text{mae}}(G_{\mathbf{w}}) = \mathbb{E}_{O,O^*}[\|H(O) - H(G_{\mathbf{w}}(O^*))\|_1]$ $\mathcal{L}_{\text{adv}}(G_{\mathbf{w}}, D'_{\mathbf{w}}) = \left(\mathbb{E}_{\mathbf{o}\sim\mathbf{p}_{\mathbf{o}}(\mathbf{o})}[\log D_{\mathbf{w}'}(\mathbf{o})] + \mathbb{E}_{\mathbf{o}^*\sim\mathbf{p}_{\mathbf{o}^*}(\mathbf{o}^*)}[\log(1 - D_{\mathbf{w}'}(G_{\mathbf{w}}(\mathbf{o}^*)))]\right)$

 $\mathscr{L}_{\operatorname{npcc}}(G_{\mathbf{w}}) = \mathbb{E}_{O,O^*}[-r_{O,G_{\mathbf{w}}(O^*)}]$

 $\mathscr{L}_{\text{total}} = \mathscr{L}_{\text{npcc}}(G_{\mathbf{w}}) + \alpha \times \mathscr{L}_{\text{mae}}(G_{\mathbf{w}}) + \beta \times \arg\min_{G_{\mathbf{w}}} \max_{D_{\mathbf{w}'}} \mathscr{L}_{\text{adv}}(G_{\mathbf{w}}, D'_{\mathbf{w}})$

Numerical Results (R = 0.5 with 10⁴ photons per pixel)

Ground truth

One iteration Approx

100 iterations

End-to-End

Non-generative

Generative

0.3

Numerical Results

Massachusetts Institute of Technology

Numerical Results (R=0.5)

Numerical Results

Institute of Technology

Experimental study

F

Experimental Results (R=0.5)

Experimental Results

Institute of Technology

Thanks the TEAM!

Abraham Levitan

George Barbastathis

Riccardo Comin

Mo Deng

Ptychography Probe retrieval

RPI reconstruction (100 photon)

Experimental Results

