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Presenter Notes
Presentation Notes
The advantage in using no lenses is that the final image is aberration–free and so resolution is only diffraction and dose limited
Incoherence induced by, e.g., time-varying wavefront distortions or incoherent scattering processes like fluorescence emission or Compton scattering
Up to a global phase factor
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Presenter Notes
Presentation Notes
Symmetry breaking(the spatial shift and conjugate inversion degeneracy 2D CDI), fast convergences



Related Works

Ptycho. Scan

PtychoNet: Fast and High Quality Phase
Retrieval for Ptychography
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Figure 1: Architecture of PtychoNet. In the network: C - convolution, size 4x4, stride 2; Ct -
convolution transpose, size 4x4, stride 2; BN - batch normalization; ¢ - sigmoid. Activation
functions in the encoder is LeakyReLLU, oo = 0.2; ReLLU in the decoder.

ALGORITHM 1: Reconstruction using PtychoNet.

Input: Full scan A € RY>*"" scan layout M € ZV*4.
Output: Object image Y € R>*H*W,

N QA Nt AW -

Y=K= 02><H><W;
for each diffraction image A in parallel do

Compute the corresponding object patch Y in real space with input A ;;
M;(Y) =M;(Y) +Y;
M;(K) = M;(K) +1;

end
Y =Y/max(K,1);
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Real-time sparse-sampled Ptychographic imaging through deep neural
networks
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FIG. 1. Architecture of PtychoNN, a deep convolutional neu-
ral network that can predict real-space amplitude and phase
from input diffraction data alone.

Deep neural networks in single-shot
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Fig. 2. A schematic of the proposed SspNet architecture. SspNet is comprised of an encoder
network and a decoder network (a convolutional encoder-decoder) which are represented in
this figure as trapezoids: the width of a trapezoid (parallel to the bases) indicates the spatial
size of the tensors (not to scale) and the fill color indicates the number of channels where
darker color means more channels.



Problems of Deep Learning in Far-field

global phase degeneracy prevent one-to-one
correspondence

large domain transfer
Fourier to Real

diffraction patterns ‘_ ~ object phase
| F{P(x,y)O(x,y)}|* = | F{P(ks, ky) x O(ky, k) } 2,
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Problems of Deep Learning in Far-field

Conv 1s translational
tnvariant

A Y (1-1) y
Wigm = 2, _ Zitp it k/takm + bijm
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go(x + 0z, y + 0y) # | F{P(x,y)O(x + dz.y + du) }|.



Solution? approximant prior + deep learning

« compute/memory efficient for training
 input to the convolutional network is in image domain
« ground phase state is produced (by tanh layer)

diffraction patterns approximant phase ML reconstructed phase
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Generating approximant via automatic differentiation with
one iteration
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Ghosh, Sushobhan, et al. "ADP: Automatic differentiation ptychography." 2018 IEEE
B B Massachusetts International Conference on Computational Photography (ICCP). IEEE, 2018
I I I I I Institute of
Technology




Network Architecture
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Network Architecture
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Zipee(Gw) = Eo,0:[-70,64(0%)]
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S%dV(GW’ D;v) = (Eo~po(0) [ IOg Dy (0)] + IE0*‘~p0* (0*) [ IOg(l - DW'(GW(O*)))])

ground truth

ﬁotal = lecc(Gw) taX Zmae(Gw) + 13 X arg Igil‘l rgax D%dv(Gw, D;V)



Numerical ReSUItS (R = 0.5 with 10" 4 photons per pixel)

100 iterations
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Numerical Results
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umerical Results ®-o.5)
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Numerical Results
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Experimental study
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Presenter Notes
Presentation Notes
a 5 µm pinhole at the focus of a beam expander to enforce spatial coherence across the beam diameter.
A randomized pattern was then imprinted on the wavefield using a randomized zone plate with a 2 cm diameter and a 50 cm focal length, focal spot 2mm
EM-CCD camera (QImaging Rolera EM-C2) with 8 µm pixels
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Experimental Results
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Ptychography Probe retrieval

I B B Massachusetts RPI reconstruction (100 photon)
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Experimental Results

SNR: 57.6 dB SNR: 57.6 dB SNR: 36.7 dB

Approximants
(one iteration)

100 iterations

Non Generative Model

Generative Model

I B Massachusetts
I I Institute of
Technology



	Randomized Probed Imaging through Deep K-learning�(Gradient Descent is All You Need)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

